This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

REACTION OF HYDRAZONOYL HALIDES WITH 5-ARYLMETHYLENE-3-PHENYL-2-THIOXOTHIAZOLIDIN-4-ONE. SYNTHESIS OF 4,9-DITHIA-1,2,6-TRIAZASPIRO[4,4]NONAN-2-EN-7-ONE

Hamdi M. Hassaneen^a; Ahmed S. Shawali^a; Dalia S. Farag^b; Enas M. Ahmed^b
^a Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt ^b National Research Centre, Giza, Egypt

To cite this Article Hassaneen, Hamdi M. , Shawali, Ahmed S. , Farag, Dalia S. and Ahmed, Enas M.(1996) 'REACTION OF HYDRAZONOYL HALIDES WITH 5-ARYLMETHYLENE-3-PHENYL-2-THIOXOTHIAZOLIDIN-4-ONE. SYNTHESIS OF 4,9-DITHIA-1,2,6-TRIAZASPIRO[4,4]NONAN-2-EN-7-ONE', Phosphorus, Sulfur, and Silicon and the Related Elements, 113: 1, 53 — 58

To link to this Article: DOI: 10.1080/10426509608046377 URL: http://dx.doi.org/10.1080/10426509608046377

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTION OF HYDRAZONOYL HALIDES WITH 5-ARYLMETHYLENE-3-PHENYL-2-THIOXOTHIAZOLIDIN-4-ONE. SYNTHESIS OF 4,9-DITHIA-1,2,6-TRIAZASPIRO[4,4]NONAN-2-EN-7-ONE

HAMDI M. HASSANEEN* and AHMED S. SHAWALI

Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt

and

DALIA S. FARAG and ENAS M. AHMED National Research Centre, Dokki, Giza, Egypt

(Received October 17, 1995; in final form November 29, 1995)

Nitrilimines 2 cycloadd to the C=S double bond rather than the exocyclic C=C double bond of 3-phenyl-5-arylmethylene-2-thioxothiazolidin-4-one 7 to give the corresponding spiro cycloadducts 8 in good yield.

Key words: Cycloaddition, hydrazonoyl halides, nitrilimines, 3-phenyl-5-arylmethylene-2-thioxo-thiazolidin-4-one.

Nitrilimines 2 were reported to react with (z)-4-arylmethylene-2-phenyl- $5(4\underline{H})$ -thiazolones 3 and 3,5-diaryl-1,3,4-thiadiazolines-2-thione 4 to give the spiro cycloadducts 5 and 6, respectively (Scheme 1).^{1,2} In this paper we wish to report the results

$$R - C$$

$$N - NH - Ar$$

$$X = Cl(Br) \downarrow Et_3N$$

$$R - C = N - NAr$$

$$R - C = N - NAr$$

$$Ar'$$

Scheme 1

TABLE I

Melting points and analytical data of products 8a-p

No.	mp.(°C) Solvent		Mol. formula	Analy	Analysis		Calcd./Found	
				C %	Н %	N %	S %	
8a	194	DMF	$^{\mathrm{C}}_{30}^{\mathrm{H}}_{23}^{\mathrm{N}}_{3}^{\mathrm{O}}_{2}^{\mathrm{S}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_$	69.1 69.2	4.4 4.5	8.1 8.3	12.3 12.0	
8b	207	Acetic acid	$^{\mathrm{C}}_{32}^{\mathrm{H}}_{25}^{\mathrm{N}}_{3}^{\mathrm{O}}_{2}^{\mathrm{S}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_$	70.2 69.9	4.6 4.3	7.7 7.6	11.7 11.5	
8c	196	Acetic acid	$^{\mathrm{C}}_{31}^{\mathrm{H}}_{23}^{\mathrm{N}}_{3}^{\mathrm{O}}_{3}^{\mathrm{S}}_{2}^{\mathrm{C}}_{3}^{\mathrm{C}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_{3}^{\mathrm{C}}_$	67.8 68.1	4.2 4.4	7.7 7.7	11.7 11.5	
8 d	206	Acetic acid	$C_{35}H_{25}N_3O_3S_2$	70.1 70.2	4.1 4.0	7.0 6.8	10.6 10.4	
8 e	186	Dioxane	$^{\mathrm{C}}_{29}^{\mathrm{H}}_{21}^{\mathrm{N}}_{3}^{\mathrm{O}}_{3}^{\mathrm{S}}_{3}^{\mathrm{S}}_{3}^{\mathrm{S}}$	62.7 62.3	3.8 4.1	7.6 7.7	17.3 17.1	
8f	230	Dioxane	$^{\mathrm{C}}_{26}^{\mathrm{H}}_{21}^{\mathrm{N}}_{3}^{\mathrm{O}}_{3}^{\mathrm{S}}_{2}^{\mathrm{S}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_$	64.1 64.3	4.3 4.1	8.6 8.5	13.1 13.0	
8g	202	Acetic acid	$^{\mathrm{C}}_{27}^{\mathrm{H}}_{23}^{\mathrm{N}}_{3}^{\mathrm{O}}_{4}^{\mathrm{S}}_{2}^{\mathrm{C}}$	62.7 62.7	4.4 4.1	8.1 8.0	12.4 12.4	
8h	225	Acetic acid	$C_{31}^{H}_{24}^{N}_{4}^{O}_{3}^{S}_{2}$	65.9 65.6	4.3 4.6	9.9 9.7	11.3 11.2	
8i	205	DMF	$^{\mathrm{C}}_{30}^{\mathrm{H}}_{23}^{\mathrm{N}}_{3}^{\mathrm{OS}}_{2}^{O$	71.3 70.9	4.6 5.0	8.3 8.3	12.7 12.7	
8j	210	DMF	$C_{32}H_{25}N_3OS_2$	72.3 72.5	4.7 4.7	7.9 7.7	12.1 12.1	
8k	195	Acetic acid	$C_{31}H_{23}N_3O_2S_2$	69.8 69.5	4.3 4.6	7.9 7.7	12.0 12.1	
81	195	Acetic acid	$^{\mathrm{C}}_{35}^{\mathrm{H}}_{25}^{\mathrm{N}}_{3}^{\mathrm{O}}_{2}^{\mathrm{S}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_$	72.0 72.0	4.3 4.4	7.2 7.3	11.0 10.9	
8m	187	Acetic acid	$^{\mathrm{C}}_{29}^{\mathrm{H}}_{21}^{\mathrm{N}}_{3}^{\mathrm{O}}_{2}^{\mathrm{S}}_{3}^{\mathrm{O}}_{3}^{\mathrm{S}}_{3}^{\mathrm{O}}_{3}^{\mathrm{S}}_{3}^{\mathrm{O}}$	64.6 64.2	3.9 3.7	7.8 7.7	17.8 17.7	
8n	162	Acetic acid	$^{\mathrm{C}}_{26}^{\mathrm{H}}_{21}^{\mathrm{N}}_{3}^{\mathrm{O}}_{2}^{\mathrm{S}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_$	66.2 65.9	4.5 4.6	8.9 8.7	13.6 13.4	
80	140	Acetic acid	$^{\mathrm{C}}_{27}^{\mathrm{H}}_{23}^{\mathrm{N}}_{3}^{\mathrm{S}}_{2}^{\mathrm{O}}_{3}^{\mathrm{S}}_{2}^{\mathrm{O}}_{3}^{\mathrm{S}}_{2}^{\mathrm{O}}_{3}^{\mathrm{O}_{3}^{\mathrm{O}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{3}^{\mathrm{O}}_{$	64.6 64.5	4.6 4.7	8.4 8.4	12.8 12.9	
9p	215	Acetic acid	$^{\mathrm{C}}_{31}^{\mathrm{H}}_{24}^{\mathrm{N}}_{4}^{\mathrm{O}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}_{2}^{\mathrm{S}}$	67.8 67.7	4.4 4.5	10.2 10.1	11.7 11.8	

of the study of the reaction of 3-phenyl-5-arylmethylene-2-thioxothiazolidin-4-one 7 with a series of nitrilimines. This study was undertaken with the objective of identifying the site selectivity in the reactions of 7 with 1,3-dipoles, as such reactions can lead to cycloadducts 8 and 9 and/or 10.

RESULTS AND DISCUSSION

Reactions of nitrilimines 2, generated *in situ* by the action of triethylamine on the corresponding hydrazonoyl halides 1 in refluxing chloroform, with 7 gave, in each case, a single compound as evidenced by TLC analysis of the crude reaction product.

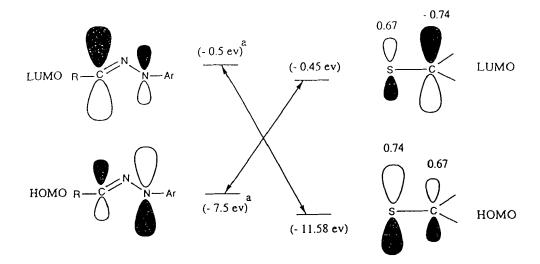
TABLE II						
Characteristic IR, ¹ H NMR	and MS	spetral	data	of	products	8a-p

			•
No.	IR	1 _{H-NMR}	m/z
8a	1690 (C=O)	3.9 (s, 3 H); 6.9-8.0 (m, 20 H)	
8b	1690 (C=O)	3.9 (s, 3 H), 6.9-8.1 (m, 22 H)	
8c	1685 (C=O), 1670 (C=O)	3.8 (s, 3 H), 7.0-8.1 (m, 20 H)	
8 d	1690 (C=O), 1660 (C=O)	3.8 (s, 3 H), 7.1-8.0 (m, 21 H), 9.1 (s, 3 H).	
8e	1690 (C=O), 1650 (C=O)	3.8 (s, 3 H), 7.0-7.9 (m, 18 H)	555, 364, 164, 111, 77, 51
8f	1700 (C=C), 1684 (C=C)	2.2 (s, 3 H), 3.8 (s, 3 H), 7.0-8.1 (m,15 H).	
8g	1715 (C=O), 1690 (C=O)	1.4 (t, J = 7Hz, 3 H), 2.2 (s, 3 H), 4.3 (q J = 7Hz, 2 H) 7.0-7.9 (m, 10 H)	517, 325, 164, 91, 77,51
8h	3350 (NH), 1685 (broad C≃O).	3.9 (s, 3 H), 7.0-7.8 (m, 21 H)	
8i	1690 (C=O)	2.3 (s, 3 H); 7.0-7.9 (m, 20 H)	505, 396, 330, 194, 148, 91.
8j	1690 (C=O)	2.3 (s, 3 H), 6.9-8.0 (m,22 H)	
8 k	1690 (C=O), 1670 (C=C)	2.3 (s, 3 H), 7.0-8.1 (m, 20 H)	
81	1690 (C=O), 1650 (C=O).	2.4 (s, 3 H), 7.0-8.0 (m, 21 H), 9.0 (s, 1 H).	
8m	1690 (C=O), 1660 (C=O).	2.4 (s, 3 H), 7.0-7.8 (m, 18 H)	
8n	1700 (C=O), 1690 (C=O)	2.3 (s, 3 H), 2.4 (s, 3 H), 7.2-7.9 (m, 15 H)	
80	1715 (C=C), 1690 (C=O).	1.3 (t, J = 7Hz, 3 H), 2.4 (s, 3 H), 4.3 (q, J = 7 Hz, 2 H), 7.1-7.9 (m, 15 H).	
8р	3399 (NH), 1695 (C=O), 1678 (C=O).	2.3 (s,3 H), 7.0-7.9 (m,12 H)	

Mass spectra and elemental analyses of the pure products isolated supported the structures to be 1:1 cycloadducts (Tables I and II).

Three structures namely 8-10 can be written for each of such products (Scheme 2). However, the latter two structures 9 and 10 were discarded on the basis of IR and ^{1}H NMR spectra. Thus, each of the products isolated exhibits a carbonyl absorption near 1690 cm⁻¹ assignable to α , β -unsaturated carbonyl groups, similar to that of the starting dipolarophiles 7 ($\nu = 1960$ cm⁻¹). Furthermore, the ^{1}H NMR spectra of the isolated products showed a common one proton singlet near δ 7.8 ppm assignable to the vinylic proton resonance. The starting thiazolines 7 exhibited such a singlet near δ 7.8 ppm. Consequently, the products of the reaction studied were assigned structure 8. The latter structure was also evidenced by the observation that all products 8a-h showed the color of a bromine solution in chloroform. The exclusion of structure 10 was supported by the absence of a methine proton signal near δ 6.0 ppm in their ^{1}H NMR spectra. Spiropyrazolines of type 10 were reported to exhibit a characteristic methine proton signal near δ 6.0 ppm.³

The foregoing results indicate that the studied reactions are site selective leading to the exclusive formation of products 8, that is the C=S bond is more dipolar ophilic


Scheme 2

toward nitrilimines 2 than to both the C=C and C=O bonds. This observed site selectivity can be rationalized in terms of FMO theory. As the cycloaddition reactions of nitrilimines with various dipolarophiles are known to be controlled by HOMO (nitrilimine)-LUMO (dipolarophile) interaction, it would be expected that the reactivity of the dipolarophile would increase with decrease of the energy to its LUMO. Molecular orbital calculations⁴ indicate that the energy of the LUMO of $H_2C=S$, $H_2C=O$, $H_2C=CH_2$ dipolarophiles (Scheme 3) decrease in the order:

$$C = C (1.44 \text{ eV}) > C = O (1.79 \text{ eV}) > C = S (-0.45 \text{ eV})$$

Accordingly, it would be expected that nitrilimine would preferably attack the C=S site more than the other two reactive sites present in 7 thus leading to 8.

The regiochemistry assigned for the latter product 8 isolated from the cycloaddi-

The relative magnitudes of orbital coefficients of the FMOs of nitrilimine and thione dipolarophile. (a, taken from ref. 3)

Scheme 3

tion of 2 with the C=S group of 7 agrees with the principle of maximum gain of bond energy of the two new bonds,⁵ as well with FO interaction.⁶ In Scheme 3 the relative size of the aromatic orbital coefficients of both the nitrilimine 2 and C=S dipolarophilic group are shown. According to Fukui⁷ a cycloaddition reaction takes place in the direction of maximal HOMO-LUMO overlap as such an overlap will lead to a product of higher stability. As the maximal HOMO-LUMO overlap results from the overlap of orbitals of similar magnitude, i.e. large with large and small with small, the cycloaddition of 2 to C=S occurs via the formation of C-S and C-N bonds leading thus to 8.

EXPERIMENTAL

Melting points were determined on a Gallenkamp electrothermal melting point apparatus and are uncorrected. Infrared spectra were determined on a Pye Unicam SP-300 infrared spectrophotometer. ¹H NMR spectra were recorded on a Varian gemini 200 instrument with TMS as internal standard. Elemental analyses were carried out at the microanalytical laboratory at the University of Cairo, Giza, Egypt. 5-Arylmethylene-3-phenyl-2-thioxothiazolidin-4-ones 7⁸ and hydrazonoyl halides 1a, ⁹ 1b, ¹⁰ 1c, ¹¹ 1d, ¹² 1e, ¹³ 1f, ¹⁴ 1g, ¹⁵ and 1h ¹⁶ were prepared as previously described.

4,9-Dithia-1,2,6-triazaspiro[4,4]nonan-2-en-7-one 8: General method. To a solution of 5-arylmethylene-3-phenyl-2-thioxothiazolidin-4-one 7 (5 mmol) and the appropriate hydrazonoyl halides (5 mmol) in chloroform (40 ml) was added triethylamine (0.7 ml, 5 mmol) at room temperature. The reaction mixture was refluxed until the hydrazonoyl halides disappeared (6 h) as indicated by TLC analysis. The solvent was evaporated and the residue was treated with methanol. The solid formed was collected and crystallized from suitable solvents to give the corresponding 4,9-dithia-1,2,6-triazaspiro[4,4]nonan-2-en-7-one 8.

REFERENCES

- 1. E. Argyropoulou and E. Thessalonikeos, Ann. Chem., 1097 (1990).
- 2. R. Huisgen, R. Grashey, M. Seidel, H. Knupfer and R. Schmidt, Ann. Chem., 169 (1962).
- 3. A. S. Shawali, A. M. Farag and M. S. Algharib, J. Chem. Res., (S), 80 (1993).
- K. N. Houk and Yamaguchi, "1,3-Dipolar Cycloaddition Chemistry," A. Padwa, ed., John Wiley and Sons, New York 1984, Vol. 2, Chap. 13.
- 5. R. Huisgen, Angew. Chem. Intern. Ed., 2, 633 (1963).
- 6. K. N. Houk, J. Sims, C. R. Watts and L. J. Lusks, J. Amer. Chem. Soc., 95, 7301 (1973).
- 7. K. Fukui, Bull. Chem. Soc. Jpn., 39, 498 (1966).
- 8. A. Zipser, Monatsheffe für chemie, 24, 509 (1893).
- 9. P. Wolkoff, Can. J. Chem., 53, 1333 (1975).
- H. M. Hassaneen, N. M. Elwan, A. Harhash and A. S. Shawali, J. Heterocycl. Chem., 21, 1013 (1984).
- 11. A. S. Shawali and A. O. Abdelhamid, Bull. Chem. Soc. Jpn., 49, 321 (1976).
- 12. H. M. Hassaneen, A. S. Shawali, N. M. Elwan and N. M. Abounada, Sulfur Letters, 13, 273 (1992).
- 13. A. M. Farag and M. S. Algharib, Org. Prep. Procd. Int., 20, 421 (1988).
- 14. N. F. Eweiss and A. Osman, J. Heterocycl. Chem., 17, 1713 (1980).
- A. S. Shawali, N. F. Eweiss, H. M. Hassaneen and M. S. Algharib, Bull. Chem. Soc. Jpn., 48, 305 (1975).
- 16. A. S. Shawali and A. Osman, Tetrahedron, 27, 2517 (1971).